Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Virus Evol ; 7(1): veab014, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1093600

ABSTRACT

The coronavirus, Severe Acute Respiratory Syndrome (SARS)-CoV-2, responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, has emphasized the need for a better understanding of the evolution of virus-host interactions. ORF3a in both SARS-CoV-1 and SARS-CoV-2 are ion channels (viroporins) implicated in virion assembly and membrane budding. Using sensitive profile-based homology detection methods, we unify the SARS-CoV ORF3a family with several families of viral proteins, including ORF5 from MERS-CoVs, proteins from beta-CoVs (ORF3c), alpha-CoVs (ORF3b), most importantly, the Matrix (M) proteins from CoVs, and more distant homologs from other nidoviruses. We present computational evidence that these viral families might utilize specific conserved polar residues to constitute an aqueous pore within the membrane-spanning region. We reconstruct an evolutionary history of these families and objectively establish the common origin of the M proteins of CoVs and Toroviruses. We also show that the divergent ORF3 clade (ORF3a/ORF3b/ORF3c/ORF5 families) represents a duplication stemming from the M protein in alpha- and beta-CoVs. By phyletic profiling of major structural components of primary nidoviruses, we present a hypothesis for their role in virion assembly of CoVs, ToroVs, and Arteriviruses. The unification of diverse M/ORF3 ion channel families in a wide range of nidoviruses, especially the typical M protein in CoVs, reveal a conserved, previously under-appreciated role of ion channels in virion assembly and membrane budding. We show that M and ORF3 are under different evolutionary pressures; in contrast to the slow evolution of M as core structural component, the ORF3 clade is under selection for diversification, which suggests it might act at the interface with host molecules and/or immune attack.

2.
Virus Res ; 286: 198074, 2020 09.
Article in English | MEDLINE | ID: covidwho-611212

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human coronavirus causing the pandemic of severe pneumonia (Coronavirus Disease 2019, COVID-19). SARS-CoV-2 is highly pathogenic in human, having posed immeasurable public health challenges to the world. Innate immune response is critical for the host defense against viral infection and the dysregulation of the host innate immune responses probably aggravates SARS-CoV-2 infection, contributing to the high morbidity and lethality of COVID-19. It has been reported that some coronavirus proteins play an important role in modulating innate immunity of the host, but few studies have been conducted on SARS-CoV-2. In this study, we screened the viral proteins of SARS-CoV-2 and found that the viral ORF6, ORF8 and nucleocapsid proteins were potential inhibitors of type I interferon signaling pathway, a key component for antiviral response of host innate immune. All the three proteins showed strong inhibition on type I interferon (IFN-ß) and NF-κB-responsive promoter, further examination revealed that these proteins were able to inhibit the interferon-stimulated response element (ISRE) after infection with Sendai virus, while only ORF6 and ORF8 proteins were able to inhibit the ISRE after treatment with interferon beta. These findings would be helpful for the further study of the detailed signaling pathway and unveil the key molecular player that may be targeted.


Subject(s)
Betacoronavirus/genetics , Host-Pathogen Interactions/genetics , Interferon-beta/genetics , NF-kappa B/genetics , Nucleocapsid Proteins/genetics , Viral Proteins/genetics , Betacoronavirus/immunology , Coronavirus Nucleocapsid Proteins , Gene Expression Regulation , Genes, Reporter , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Interferon-beta/immunology , Luciferases/genetics , Luciferases/metabolism , NF-kappa B/immunology , Nucleocapsid Proteins/immunology , Phosphoproteins , Plasmids/chemistry , Plasmids/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Response Elements , SARS-CoV-2 , Sendai virus/genetics , Sendai virus/immunology , Signal Transduction , Transfection/methods , Viral Proteins/immunology
3.
mBio ; 11(3)2020 05 29.
Article in English | MEDLINE | ID: covidwho-432175

ABSTRACT

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was recently identified as the causative agent for the coronavirus disease 2019 (COVID-19) outbreak that has generated a global health crisis. We use a combination of genomic analysis and sensitive profile-based sequence and structure analysis to understand the potential pathogenesis determinants of this virus. As a result, we identify several fast-evolving genomic regions that might be at the interface of virus-host interactions, corresponding to the receptor binding domain of the Spike protein, the three tandem Macro fold domains in ORF1a, and the uncharacterized protein ORF8. Further, we show that ORF8 and several other proteins from alpha- and beta-CoVs belong to novel families of immunoglobulin (Ig) proteins. Among them, ORF8 is distinguished by being rapidly evolving, possessing a unique insert, and having a hypervariable position among SARS-CoV-2 genomes in its predicted ligand-binding groove. We also uncover numerous Ig domain proteins from several unrelated metazoan viruses, which are distinct in sequence and structure but share comparable architectures to those of the CoV Ig domain proteins. Hence, we propose that SARS-CoV-2 ORF8 and other previously unidentified CoV Ig domain proteins fall under the umbrella of a widespread strategy of deployment of Ig domain proteins in animal viruses as pathogenicity factors that modulate host immunity. The rapid evolution of the ORF8 Ig domain proteins points to a potential evolutionary arms race between viruses and hosts, likely arising from immune pressure, and suggests a role in transmission between distinct host species.IMPORTANCE The ongoing COVID-19 pandemic strongly emphasizes the need for a more complete understanding of the biology and pathogenesis of its causative agent SARS-CoV-2. Despite intense scrutiny, several proteins encoded by the genomes of SARS-CoV-2 and other SARS-like coronaviruses remain enigmatic. Moreover, the high infectivity and severity of SARS-CoV-2 in certain individuals make wet-lab studies currently challenging. In this study, we used a series of computational strategies to identify several fast-evolving regions of SARS-CoV-2 proteins which are potentially under host immune pressure. Most notably, the hitherto-uncharacterized protein encoded by ORF8 is one of them. Using sensitive sequence and structural analysis methods, we show that ORF8 and several other proteins from alpha- and beta-coronavirus comprise novel families of immunoglobulin domain proteins, which might function as potential immune modulators to delay or attenuate the host immune response against the viruses.


Subject(s)
Coronavirus/genetics , Coronavirus/pathogenicity , Evolution, Molecular , Viral Proteins/genetics , Virulence Factors/genetics , Amino Acid Sequence , Animals , Betacoronavirus/chemistry , Betacoronavirus/classification , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Coronavirus/chemistry , Coronavirus/classification , Genome, Viral/genetics , Host Specificity , Humans , Immunoglobulin Domains/genetics , Models, Molecular , Open Reading Frames , Phylogeny , SARS-CoV-2 , Viral Proteins/chemistry , Virulence Factors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL